Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 732
Filtrar
1.
BMC Biol ; 22(1): 86, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38637801

RESUMO

BACKGROUND: The blood-brain barrier serves as a critical interface between the bloodstream and brain tissue, mainly composed of pericytes, neurons, endothelial cells, and tightly connected basal membranes. It plays a pivotal role in safeguarding brain from harmful substances, thus protecting the integrity of the nervous system and preserving overall brain homeostasis. However, this remarkable selective transmission also poses a formidable challenge in the realm of central nervous system diseases treatment, hindering the delivery of large-molecule drugs into the brain. In response to this challenge, many researchers have devoted themselves to developing drug delivery systems capable of breaching the blood-brain barrier. Among these, blood-brain barrier penetrating peptides have emerged as promising candidates. These peptides had the advantages of high biosafety, ease of synthesis, and exceptional penetration efficiency, making them an effective drug delivery solution. While previous studies have developed a few prediction models for blood-brain barrier penetrating peptides, their performance has often been hampered by issue of limited positive data. RESULTS: In this study, we present Augur, a novel prediction model using borderline-SMOTE-based data augmentation and machine learning. we extract highly interpretable physicochemical properties of blood-brain barrier penetrating peptides while solving the issues of small sample size and imbalance of positive and negative samples. Experimental results demonstrate the superior prediction performance of Augur with an AUC value of 0.932 on the training set and 0.931 on the independent test set. CONCLUSIONS: This newly developed Augur model demonstrates superior performance in predicting blood-brain barrier penetrating peptides, offering valuable insights for drug development targeting neurological disorders. This breakthrough may enhance the efficiency of peptide-based drug discovery and pave the way for innovative treatment strategies for central nervous system diseases.


Assuntos
Peptídeos Penetradores de Células , Doenças do Sistema Nervoso Central , Humanos , Barreira Hematoencefálica/química , Células Endoteliais , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/farmacologia , Peptídeos Penetradores de Células/uso terapêutico , Encéfalo , Doenças do Sistema Nervoso Central/tratamento farmacológico
2.
Molecules ; 29(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38542884

RESUMO

Cell-penetrating peptides (CPPs) are invaluable tools for delivering various substances into cells by crossing biological membranes. However, the effects of cell-penetrating peptide fusion proteins on the biological activity of antibodies remain to be fully understood. Here, we engineered a recombinant protein, LP-scFv, which combines the single-chain variable region of anti-human epidermal growth factor receptor-2 with a novel and non-oxic cell-penetrating peptide as a leader peptide. The introduction of this leader peptide led to a more than twofold increase in the internalization efficiency of the single-chain antibody, as confirmed using microscopic analysis and flow cytometry. The effects of the single-chain antibodies and LP-scFv on cell viability were evaluated using the MTT assay. Both the single-chain antibodies and LP-scFv reduced the viability of BT474 and NCI-N87 cells in a dose-dependent manner while exhibiting minimal toxicity towards MCF-7 and MCF-10A cells. Further investigation into LP-scFv's mechanism revealed that the induced leader peptide does not alter the MAPK-ERK1/2 and PI3K/AKT pathways of single-chain antibodies. An enhanced antitumor activity was also confirmed in an NCI-N87 tumor xenograft model in mice with a reduction of 45.2% in tumor growth inhibition (vs. 23.1% for scFv) with a 50 mg/kg dose after orthotopic injection administration, which was equivalent to that of trastuzumab (vs. 55.7% for trastuzumab). Overall, these results indicate that LP-scFv exhibits significant permeation activity in HER2-positive cells to enhance the intracellular dose effect on antitumor activity in vitro and in vivo. This research lays the foundation for designing novel antibody-based therapies for cancer.


Assuntos
Neoplasias da Mama , Peptídeos Penetradores de Células , Anticorpos de Cadeia Única , Humanos , Animais , Camundongos , Feminino , Neoplasias da Mama/patologia , Anticorpos de Cadeia Única/farmacologia , Peptídeos Penetradores de Células/farmacologia , Peptídeos Penetradores de Células/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Trastuzumab/uso terapêutico , Receptor ErbB-2/metabolismo , Sinais Direcionadores de Proteínas , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Bioconjug Chem ; 35(3): 419-431, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38450606

RESUMO

The design of a potent amyloid-ß protein (Aß) inhibitor plays a pivotal role in the prevention and treatment of Alzheimer's disease (AD). Despite endogenous transthyretin (TTR) being recognized as an Aß inhibitor, the weak inhibitory and blood brain barrier (BBB) crossing capabilities hinder it for Aß aggregation inhibition and transport. Therefore, we have herein designed a recombinant TTR by conjugating a cationic cell penetrating peptide (penetratin, Pen), which not only enabled the fusion protein, TTR-Pen (TP), to present high BBB penetration but also greatly enhanced the potency of Aß inhibition. Namely, the protein fusion made TP positively charged, leading to a potent suppression of Aß40 fibrillization at a low concentration (1.5 µM), while a TTR concentration as high as 12.5 µM was required to gain a similar function. Moreover, TP could mitigate Aß-induced neuronal death, increase cultured cell viability from 72% to 92% at 2.5 µM, and extend the lifespan of AD nematodes from 14 to 18 d. Thermodynamic studies revealed that TP, enriched in positive charges, presented extensive electrostatic interactions with Aß40. Importantly, TP showed excellent BBB penetration performance, with a 10 times higher BBB permeability than TTR, which would allow TP to enter the brain of AD patients and participate in the transport of Aß species out of the brain. Thus, it is expected that the fusion protein has great potential for drug development in AD treatment.


Assuntos
Doença de Alzheimer , Peptídeos Penetradores de Células , Humanos , Barreira Hematoencefálica/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos Penetradores de Células/farmacologia , Peptídeos Penetradores de Células/metabolismo , Pré-Albumina/metabolismo , Pré-Albumina/uso terapêutico , Peptídeos beta-Amiloides/metabolismo , Proteínas Recombinantes/uso terapêutico
4.
Sci Rep ; 14(1): 4604, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409451

RESUMO

Cell-penetrating peptides show promise as versatile tools for intracellular delivery of therapeutic agents. Various peptides have originated from natural proteins with antimicrobial activity. We investigated the mammalian cell-penetrating properties of a 16-residue peptide with the sequence GRCRGFRRRCFCTTHC from the C-terminus tail of the Medicago truncatula defensin MtDef4. We evaluated the peptide's ability to penetrate multiple cell types. Our results demonstrate that the peptide efficiently penetrates mammalian cells within minutes and at a micromolar concentration. Moreover, upon N-terminal fusion to the fluorescent protein GFP, the peptide efficiently delivers GFP into the cells. Despite its remarkable cellular permeability, the peptide has only a minor effect on cellular viability, making it a promising candidate for developing a cell-penetrating peptide with potential therapeutic applications.


Assuntos
Peptídeos Penetradores de Células , Proteínas , Animais , Peptídeos Penetradores de Células/farmacologia , Peptídeos Penetradores de Células/química , Mamíferos
5.
J Med Chem ; 67(2): 1197-1208, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38174919

RESUMO

Peptides are promising drug modalities that can modulate protein-protein interactions, but their application is hampered by their limited ability to reach intracellular targets. Here, we improved the cytosolic delivery of a peptide blocking p53:MDM2/X interactions using a cyclotide as a stabilizing scaffold. We applied several design strategies to improve intracellular delivery and found that the conjugation of the lead cyclotide to the cyclic cell-penetrating peptide cR10 was the most effective. Conjugation allowed cell internalization at micromolar concentration and led to elevated intracellular p53 levels in A549, MCF7, and MCF10A cells, as well as inducing apoptosis in A549 cells without causing membrane disruption. The lead peptide had >35-fold improvement in inhibitory activity and increased cellular uptake compared to a previously reported cyclotide p53 activator. In summary, we demonstrated the delivery of a large polar cyclic peptide in the cytosol and confirmed its ability to modulate intracellular protein-protein interactions involved in cancer.


Assuntos
Peptídeos Penetradores de Células , Ciclotídeos , Neoplasias , Humanos , Ciclotídeos/farmacologia , Ciclotídeos/metabolismo , Peptídeos Penetradores de Células/farmacologia , Peptídeos Penetradores de Células/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/metabolismo
6.
PLoS One ; 19(1): e0296727, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38277388

RESUMO

Carbapenem-resistant Enterobacterales (CRE) is considered a paramount threat due to its rapid spread and high mortality rate. Klebsiella pneumoniae carbapenemases (KPCs), specifically KPC-2, are prevalent enzymes responsible for carbapenem resistance in many countries. While combinations of antibiotics are commonly used, they must be tailored to match the remaining susceptibility of the infecting strains. Therefore, there is a need to develop the ß-lactamase inhibitor to effectively address this issue. ß-lactamase inhibitor protein (BLIP) and its variants, BLIP-I and BLIP-II, have demonstrated the ability to inhibit class A ß-lactamases. In particular, BLIP-II shows strong binding to the KPC-2 carbapenemase, making it a potential candidate for inhibition. To improve the intracellular penetration of BLIP-II, a cell-penetrating peptide (CPP) was employed. In this study, a KRK-rich peptide was introduced at either the N-terminal or C-terminal region of tBLIP-II, excluding the signal sequence of the BLIP-II protein. tBLIP-II, tBLIP-II-CPP, and CPP-BLIP-II were successfully expressed, and the chimeric proteins retained inhibitory activity compared to tBLIP-II alone. It is apparent that homology modeling demonstrated neither the poly-histidine tag nor the CPP interfered with the essential interaction residues of tBLIP-II. Interestingly, BLIP-II-CPP exhibited the highest inhibitory activity, reducing the minimal inhibitory concentration (MIC) of meropenem by 8 folds. Moreover, the combination of tBLIP-CPP with meropenem significantly decreased the viable bacterial cell count compared to the combination of tBLIP-II with meropenem or meropenem alone. These findings suggest that tBLIP-CPP is a promising candidate for restoring carbapenem susceptibility against CRE and provides a valuable therapeutic option for infections caused by CRE.


Assuntos
Peptídeos Penetradores de Células , Inibidores de beta-Lactamases , Meropeném/farmacologia , Inibidores de beta-Lactamases/farmacologia , Klebsiella pneumoniae , Peptídeos Penetradores de Células/farmacologia , Cefalosporinase , Antibacterianos/farmacologia , beta-Lactamases/metabolismo , Proteínas de Bactérias/metabolismo , Carbapenêmicos/farmacologia , Testes de Sensibilidade Microbiana
7.
J Cosmet Dermatol ; 23(2): 666-675, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37698157

RESUMO

AIM: This study aimed to investigate and verify the effect of cell-penetrating peptide (CPP)-conjugated soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) motif of vesicle-associated membrane protein 2 (VAMP2)-patterned peptide (INCI name: Acetyl sh-Oligopeptide-26 sh-Oligopeptide-27 SP, trade name: M.Biome-BT) on improving skin function in vitro. METHODS: The cytotoxicity of CPP-conjugated SNARE motif of VAMP2-patterned peptide (CVP) was investigated using the 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl tetrazolium bromide (MTT) assay against B16-F10 cells and human dermal fibroblasts (HDFs) and a reconstructed skin irritation test. The anti-wrinkle activity of M.Biome-BT was determined by assessing the release of norepinephrine and dopamine in PC-12 cells via ELISA. The skin-whitening effects of CVP were assessed in B16-F10 cells by measuring the intra- and extracellular melanin contents and expression levels of melanin production-related genes, such as microphthalmia-associated transcription factor (MITF), tyrosinase (TYR), tyrosinase-related protein-1 (TRP-1), and TRP-2. RESULTS: CVP is not cytotoxic to B16-F10 cells and HDFs, and no skin irritation was observed. CVP treatment considerably diminished K+ -induced norepinephrine and dopamine secretion compared with the non-treated control group (62% and 40%, respectively). Additionally, the inhibition ability of CVP on norepinephrine and dopamine release was comparable to that of botulinum neurotoxin type A (BoNT/A). CVP also increased intracellular melanin content in a dose-dependent manner, whereas extracellular melanin content decreased (76%-85%). However, CVP treatment did not affect the mRNA expression of MITF, TYR, TRP-1, and TRP-2. These results suggest that CVP does not inhibit melanin production; however, it may induce a whitening effect by inhibiting melanin transport. CONCLUSIONS: Taken together, our findings indicate that CVP could be used as an active and safe cosmeceutical ingredient for antiaging applications.


Assuntos
Peptídeos Penetradores de Células , Cosmecêuticos , Humanos , Melaninas , Proteína 2 Associada à Membrana da Vesícula , Peptídeos Penetradores de Células/farmacologia , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida , Dopamina , Monofenol Mono-Oxigenase/metabolismo , Oligopeptídeos , Norepinefrina
8.
ACS Chem Neurosci ; 15(1): 205-214, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38112732

RESUMO

Epilepsy is a chronic disease of brain dysfunction, which arises from imbalance between excitatory and inhibitory activities in neural circuits. Previously, we reported that peptide Martentoxin (MarTX), from scorpion Buthus martensii Karsch, displayed antiseizure activities by specifically inhibiting BK(α + ß4) channel currents. Injection of MarTX into the hippocampal region of mice significantly alleviated convulsive seizures. However, intravenous injection of MarTX had no antiepileptic efficacy due to the blood-brain barrier (BBB). To address this, here, we designed cell-penetrating peptide TAT-modified MarTX, in which the linker containing three glycines was put between TAT and the N-terminus of MarTX (forming MTX-N-TAT) or between TAT and the C-terminus of MarTX (forming MTX-C-TAT), respectively. We prepared them in a large amount through Escherichia coli overexpression system and then probed their antiseizure activities. Our results indicated that intravenous injection of MTX-C-TAT showed significant therapeutic efficacy of antiseizure. It increased seizure latency, reduced the total seizure duration and the number of seizures at stages 3, 4, and 5, inhibited hippocampal neuronal hyperexcitability, and exhibited neuroprotective effects on hippocampal neurons. These studies implied that MTX-C-TAT displayed intravenous antiseizure activities properly through crossing BBB and would be a potential antiepileptic drug in the future.


Assuntos
Peptídeos Penetradores de Células , Escorpiões , Camundongos , Animais , Convulsões/tratamento farmacológico , Anticonvulsivantes/farmacologia , Peptídeos Penetradores de Células/farmacologia
9.
ACS Biomater Sci Eng ; 10(2): 890-896, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38159284

RESUMO

Cell-penetrating peptides (CPPs), for example, arginine (Arg) rich peptides, are used for the intracellular delivery of nucleic acids. In this study, oligosarcosine-conjugated Arg-rich peptides were designed as plasmid DNA (pDNA) carriers, and the physicochemical parameters and transfection efficiency of the peptide/pDNA complexes were evaluated. Oligosarcosine with different lengths were conjugated to a base sequence composed of arginine and α-aminoisobutyric acid (Aib) [(Aib-Arg-Arg)3]. Oligosarcosine conjugation inhibited the aggregation of the complexes after mixing with pDNA, shielded the positive charge of the complexes, and provided efficient pDNA transfection in cultured cells. The efficiency of the pDNA transfection was improved by varying the length of the oligosarcosine moiety (10-15 units were optimal). The cellular uptake efficiency and intracellular distribution of pDNA were the same regardless of oligosarcosine conjugation. These results implied that intracellular processes, including the decondensation of pDNA, contributed to the efficiency of the protein expression from pDNA. This study demonstrated the advantages of oligosarcosine conjugation to Arg-rich CPPs and provided valuable insight into the future design of CPPs.


Assuntos
Arginina , Peptídeos Penetradores de Células , Arginina/genética , DNA/química , DNA/genética , Plasmídeos/genética , Transfecção , Peptídeos Penetradores de Células/farmacologia , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/genética
10.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38069046

RESUMO

Combining antimicrobial peptides (AMPs) with cell-penetrating peptides (CPPs) has shown promise in boosting antimicrobial potency, especially against Gram-negative bacteria. We examined the CPP-AMP interaction with distinct bacterial types based on cell wall differences. Our investigation focused on AMPs incorporating penetratin CPP and dihybrid peptides containing both cell-penetrating TAT protein fragments from the human immunodeficiency virus and Antennapedia peptide (Antp). Assessment of the peptides TAT-AMP, AMP-Antp, and TAT-AMP-Antp revealed their potential against Gram-positive strains (Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus (MRSA), and Bacillus cereus). Peptides TAT-AMP and AMP-Antp using an amyloidogenic AMP from S1 ribosomal protein Thermus thermophilus, at concentrations ranging from 3 to 12 µM, exhibited enhanced antimicrobial activity against B. cereus. TAT-AMP and TAT-AMP-Antp, using an amyloidogenic AMP from the S1 ribosomal protein Pseudomonas aeruginosa, at a concentration of 12 µM, demonstrated potent antimicrobial activity against S. aureus and MRSA. Notably, the TAT-AMP, at a concentration of 12 µM, effectively inhibited Escherichia coli (E. coli) growth and displayed antimicrobial effects similar to gentamicin after 15 h of incubation. Peptide characteristics determined antimicrobial activity against diverse strains. The study highlights the intricate relationship between peptide properties and antimicrobial potential. Mechanisms of AMP action are closely tied to bacterial cell wall attributes. Peptides with the TAT fragment exhibited enhanced antimicrobial activity against S. aureus, MRSA, and P. aeruginosa. Peptides containing only the Antp fragment displayed lower activity. None of the investigated peptides demonstrated cytotoxic or cytostatic effects on either BT-474 cells or human skin fibroblasts. In conclusion, CPP-AMPs offer promise against various bacterial strains, offering insights for targeted antimicrobial development.


Assuntos
Anti-Infecciosos , Peptídeos Penetradores de Células , Staphylococcus aureus Resistente à Meticilina , Humanos , Peptídeos Penetradores de Células/farmacologia , Peptídeos Penetradores de Células/química , Staphylococcus aureus , Escherichia coli , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Proteínas Ribossômicas/farmacologia , Testes de Sensibilidade Microbiana
11.
Int J Mol Sci ; 24(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38003614

RESUMO

Antimicrobial peptides (AMPs) have emerged as a promising solution to tackle bacterial infections and combat antibiotic resistance. However, their vulnerability to protease degradation and toxicity towards mammalian cells has hindered their clinical application. To overcome these challenges, our study aims to develop a method to enhance the stability and safety of AMPs applicable to effective drug-device combination products. The KR12 antimicrobial peptide was chosen, and in order to further enhance its delivery and efficacy the human immunodeficiency virus TAT protein-derived cell-penetrating peptide (CPP) was fused to form CPP-KR12. A new product, CPP-KR12@Si, was developed by forming silica particles with self-entrapped CPP-KR12 peptide using biomimetic silica precipitability because of its cationic nature. Peptide delivery from CPP-KR12@Si to bacteria and cells was observed at a slightly delivered rate, with improved stability against trypsin treatment and a reduction in cytotoxicity compared to CPP-KR12. Finally, the antimicrobial potential of the CPP-KR12@Si/bone graft substitute (BGS) combination product was demonstrated. CPP-KR12 is coated in the form of submicron-sized particles on the surface of the BGS. Self-entrapped AMP in silica nanoparticles is a safe and effective AMP delivery method that will be useful for developing a drug-device combination product for tissue regeneration.


Assuntos
Anti-Infecciosos , Peptídeos Penetradores de Células , Animais , Humanos , Peptídeos Antimicrobianos , Dióxido de Silício/farmacologia , Peptídeos/farmacologia , Anti-Infecciosos/farmacologia , Bactérias , Peptídeos Penetradores de Células/farmacologia , Mamíferos
12.
Mol Pharmacol ; 105(1): 39-53, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37977824

RESUMO

Hematopoietic cell transplantation (HCT) is often considered a last resort leukemia treatment, fraught with limited success due to microbial infections, a leading cause of mortality in leukemia patients. To address this critical issue, we explored a novel approach by synthesizing antileukemic agents containing antibacterial substances. This innovative strategy involves conjugating fluoroquinolone antibiotics, such as ciprofloxacin (CIP) or levofloxacin (LVX), with the cell-penetrating peptide transportan 10 (TP10). Here, we demonstrate that the resultant compounds display promising biologic activities in preclinical studies. These novel conjugates not only exhibit potent antimicrobial effects but are also selective against leukemia cells. The cytotoxic mechanism involves rapid disruption of cell membrane asymmetry leading to membrane damage. Importantly, these conjugates penetrated mammalian cells, accumulating within the nuclear membrane without significant effect on cellular architecture or mitochondrial function. Molecular simulations elucidated the aggregation tendencies of TP10 conjugates within lipid bilayers, resulting in membrane disruption and permeabilization. Moreover, mass spectrometry analysis confirmed efficient reduction of disulfide bonds within TP10 conjugates, facilitating release and activation of the fluoroquinolone derivatives. Intriguingly, these compounds inhibited human topoisomerases, setting them apart from traditional fluoroquinolones. Remarkably, TP10 conjugates generated lower intracellular levels of reactive oxygen species compared with CIP and LVX. The combination of antibacterial and antileukemic properties, coupled with selective cytostatic effects and minimal toxicity toward healthy cells, positions TP10 derivatives as promising candidates for innovative therapeutic approaches in the context of antileukemic HCT. This study highlights their potential in search of more effective leukemia treatments. SIGNIFICANCE STATEMENT: Fluoroquinolones are commonly used antibiotics, while transportan 10 (TP10) is a cell-penetrating peptide (CPP) with anticancer properties. In HCT, microbial infections are the primary cause of illness and death. Combining TP10 with fluoroquinolones enhanced their effects on different cell types. The dual pharmacological action of these conjugates offers a promising proof-of-concept solution for leukemic patients undergoing HCT. Strategically designed therapeutics, incorporating CPPs with antibacterial properties, have the potential to reduce microbial infections in the treatment of malignancies.


Assuntos
Antineoplásicos , Peptídeos Penetradores de Células , Leucemia , Animais , Humanos , Fluoroquinolonas/farmacologia , Peptídeos Penetradores de Células/farmacologia , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/metabolismo , Antineoplásicos/farmacologia , Antibacterianos/farmacologia , Leucemia/tratamento farmacológico , Transplante de Células , Mamíferos/metabolismo
13.
Biomacromolecules ; 24(11): 4890-4900, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37862236

RESUMO

The cell membrane is a restrictive biological barrier, especially for large, charged molecules, such as proteins. The use of cell-penetrating peptides (CPPs) can facilitate the delivery of proteins, protein complexes, and peptides across the membrane by a variety of mechanisms that are all limited by endosomal sequestration. To improve CPP-mediated delivery, we previously reported the rapid and effective cytosolic delivery of proteins in vitro and in vivo by their coadministration with the peptide S10, which combines a CPP and an endosomal leakage domain. Amphiphilic peptides with hydrophobic properties, such as S10, can interact with lipids to destabilize the cell membrane, thus promoting cargo internalization or escape from endosomal entrapment. However, acute membrane destabilization can result in a dose-limiting cytotoxicity. In this context, the partial or transient deactivation of S10 by modification with methoxy poly(ethylene glycol) (mPEG; i.e., PEGylation) may provide the means to alter membrane destabilization kinetics, thereby attenuating the impact of acute permeabilization on cell viability. This study investigates the influence of PEGylation parameters (molecular weight, architecture, and conjugation chemistry) on the delivery efficiency of a green fluorescent protein tagged with a nuclear localization signal (GFP-NLS) and cytotoxicity on cells in vitro. Results suggest that PEGylation mostly interferes with adsorption and secondary structure formation of S10 at the cell membrane, and this effect is exacerbated by the mPEG molecular weight. This effect can be compensated for by increasing the concentration of conjugates prepared with lower molecular weight mPEG (5 to ∼20 kDa) but not for conjugates prepared with higher molecular weight mPEG (40 kDa). For conjugates prepared with moderate-to-high molecular weight mPEG (10 to 20 kDa), partial compensation of inactivation could be achieved by the inclusion of a reducible disulfide bond, which provides a mechanism to liberate the S10 from the polymer. Grafting multiple copies of S10 to a high-molecular-weight multiarmed PEG (40 kDa) improved GFP-NLS delivery efficiency. However, these constructs were more cytotoxic than the native peptide. Considering that PEGylation could be harnessed for altering the pharmacokinetics and biodistribution profiles of peptide-based delivery agents in vivo, the trends observed herein provide new perspectives on how to manipulate the membrane permeabilization process, which is an important variable for achieving delivery.


Assuntos
Peptídeos Penetradores de Células , Polietilenoglicóis , Distribuição Tecidual , Polietilenoglicóis/química , Polímeros/química , Peptídeos Penetradores de Células/farmacologia , Sinais de Localização Nuclear
14.
Peptides ; 170: 171108, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37778465

RESUMO

Pain, a worldwide problem with a high incidence and complex pathogenesis, has attracted the attention of pharmaceutical enterprises for the development of safer and more effective drugs. Extensive experimental and clinical evidence has demonstrated the analgesic effects of two endogenous peptides: endomorphin-2 (EM-2) and salmon calcitonin (sCT). However, EM-2 has limitations, such as poor ability to cross the blood-brain barrier (BBB) and little therapeutic effect in chronic pain due to rapid in vivo proteolysis. Herein, we propose the design of a novel hybrid peptide TEM2CT by combining EM-2, sCT16-21, and the cell-penetrating peptide HIV-1 trans-activator protein (TAT) with the aim of enhancing their analgesic effects. TEM2CT treatment attenuated nociceptive behavior in both acute and chronic pain mouse models, exhibiting increased anti-allodynic and anti-anxiety effects compared to sCT treatment. Furthermore, TEM2CT also regulated the excitability of pyramidal neurons in the anterior cingulate cortex (ACC) in spared nerve injury (SNI) model mice. The improved efficacy of this hybrid peptide provides a promising strategy for developing analgesic drugs.


Assuntos
Ansiolíticos , Peptídeos Penetradores de Células , Dor Crônica , Camundongos , Animais , Ansiolíticos/farmacologia , Ansiolíticos/uso terapêutico , Dor Crônica/tratamento farmacológico , Hiperalgesia/tratamento farmacológico , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Peptídeos Penetradores de Células/farmacologia , Peptídeos Penetradores de Células/uso terapêutico
15.
Molecules ; 28(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37836842

RESUMO

Milk-derived peptides are known to confer anti-inflammatory effects. We hypothesised that milk-derived cell-penetrating peptides might modulate inflammation in useful ways. Using computational techniques, we identified and synthesised peptides from the milk protein Alpha-S1-casein that were predicted to be cell-penetrating using a machine learning predictor. We modified the interpretation of the prediction results to consider the effects of histidine. Peptides were then selected for testing to determine their cell penetrability and anti-inflammatory effects using HeLa cells and J774.2 mouse macrophage cell lines. The selected peptides all showed cell penetrating behaviour, as judged using confocal microscopy of fluorescently labelled peptides. None of the peptides had an effect on either the NF-κB transcription factor or TNFα and IL-1ß secretion. Thus, the identified milk-derived sequences have the ability to be internalised into the cell without affecting cell homeostatic mechanisms such as NF-κB activation. These peptides are worthy of further investigation for other potential bioactivities or as a naturally derived carrier to promote the cellular internalisation of other active peptides.


Assuntos
Peptídeos Penetradores de Células , NF-kappa B , Humanos , Camundongos , Animais , NF-kappa B/metabolismo , Peptídeos Penetradores de Células/farmacologia , Células HeLa , Leite/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Anti-Inflamatórios/farmacologia
16.
Cells ; 12(19)2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37830576

RESUMO

Cell-penetrating peptides (CPPs) are short peptide sequences that have the ability to cross the cell membrane and deliver cargo. Although it is critical that CPPs accomplish this task with minimal off-target effects, such actions have in many cases not been robustly screened. We presently investigated whether the commonly used CPPs TAT and the polyarginines Arg9 and Arg11 exert off-target effects on cellular Ca2+ homeostasis. In experiments employing myocytes and homogenates from the cardiac left ventricle or soleus muscle, we observed marked inhibition of Ca2+ recycling into the sarcoplasmic reticulum (SR) following incubation with polyarginine CPPs. In both tissues, the rate of SR Ca2+ leak remained unchanged, indicating that protracted Ca2+ removal from the cytosol stemmed from inhibition of the SR Ca2+ ATPase 2 (SERCA2). No such inhibition occurred following treatment with TAT, or in preparations from the SERCA1-expressing extensor digitorum longus muscle. Experiments in HEK cells overexpressing individual SERCA isoforms confirmed that polyarginine incubation specifically inhibited the activity of SERCA2a and 2b, but not SERCA1 or 3. The attenuation of SERCA2 activity was not dependent on the presence of phospholamban, and ELISA-based analyses rather revealed direct interaction between the polyarginines and the actuator domain of the protein. Surface plasmon resonance experiments confirmed strong binding within this region of SERCA2, and slow dissociation between the two species. Based on these observations, we urge caution when employing polyarginine CPPs. Indeed, as SERCA2 is expressed in diverse cell types, the wide-ranging consequences of SERCA2 binding and inhibition should be anticipated in both experimental and therapeutic settings.


Assuntos
Peptídeos Penetradores de Células , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Peptídeos Penetradores de Células/farmacologia , Peptídeos Penetradores de Células/metabolismo , Músculo Esquelético/metabolismo , Isoformas de Proteínas/metabolismo
17.
Eur J Pharm Sci ; 190: 106580, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37717668

RESUMO

In this work, a novel protonable copolymer was designed to deliver siRNA through the inhalation route, as an innovative formulation for the management of asthma. This polycation was synthesized by derivatization of α,ß-poly(N-2-hydroxyethyl)D,L-aspartamide (PHEA) first with 1,2-Bis(3-aminopropylamino)ethane (bAPAE) and then with a proper amount of maleimide terminated poly(ethylene glycol) (PEG-MLB), with the aim to increase the superficial hydrophilicity of the system, allowing the diffusion trough the mucus layer. Once the complexation ability of the copolymer has been evaluated, obtaining nanosized polyplexes, polyplexes were functionalized on the surface with a thiolated TAT peptide, a cell-penetrating peptide (CPP), exploiting a thiol-ene reaction. TAT decorated polyplexes result to be highly cytocompatible and able to retain the siRNA with a suitable complexation weight ratio during the diffusion process through the mucus. Despite polyplexes establish weak bonds with the mucin chains, these can diffuse efficiently through the mucin layer and therefore potentially able to reach the bronchial epithelium. Furthermore, through cellular uptake studies, it was possible to observe how the obtained polyplexes penetrate effectively in the cytoplasm of bronchial epithelial cells, where they can reduce IL-8 gene expression, after LPS exposure. In the end, in order to obtain a formulation administrable as an inhalable dry powder, polyplexes were encapsulated in mannitol-based microparticles, by spray freeze drying, obtaining highly porous particles with proper technological characteristics that make them potentially administrable by inhalation route.


Assuntos
Antiasmáticos , RNA Interferente Pequeno , Mucinas , Polietilenoglicóis/química , Polímeros/química , RNA Interferente Pequeno/farmacologia , RNA Interferente Pequeno/uso terapêutico , Administração por Inalação , Peptídeos Penetradores de Células/farmacologia , Peptídeos Penetradores de Células/uso terapêutico , Humanos
18.
Sci Rep ; 13(1): 14826, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684254

RESUMO

Given the widespread demand for novel antibacterial agents, we modified a cell-penetrating peptide (KFF)3K to transform it into an antibacterial peptide. Namely, we inserted a hydrocarbon staple into the (KFF)3K sequence to induce and stabilize its membrane-active secondary structure. The staples were introduced at two positions, (KFF)3K[5-9] and (KFF)3K[2-6], to retain the initial amphipathic character of the unstapled peptide. The stapled analogues are protease resistant contrary to (KFF)3K; 90% of the stapled (KFF)3K[5-9] peptide remained undigested after incubation in chymotrypsin solution. The stapled peptides showed antibacterial activity (with minimal inhibitory concentrations in the range of 2-16 µM) against various Gram-positive and Gram-negative strains, contrary to unmodified (KFF)3K, which had no antibacterial effect against any strain at concentrations up to 32 µM. Also, both stapled peptides adopted an α-helical structure in the buffer and micellar environment, contrary to a mostly undefined structure of the unstapled (KFF)3K in the buffer. We found that the antibacterial activity of (KFF)3K analogues is related to their disruptive effect on cell membranes and we showed that by stapling this cell-penetrating peptide, we can induce its antibacterial character.


Assuntos
Peptídeos Penetradores de Células , Peptídeos Penetradores de Células/farmacologia , Antibacterianos/farmacologia , Membrana Celular , Quimotripsina , Endopeptidases
19.
Eur Biophys J ; 52(6-7): 533-544, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37610696

RESUMO

Peptide nucleic acid (PNA) is a nucleic acid mimic with high specificity and binding affinity to natural DNA or RNA, as well as resistance to enzymatic degradation. PNA sequences can be designed to selectively silence gene expression, which makes PNA a promising tool for antimicrobial applications. However, the poor membrane permeability of PNA remains the main limiting factor for its applications in cells. To overcome this obstacle, PNA conjugates with different molecules have been developed. This mini-review focuses on covalently linked conjugates of PNA with cell-penetrating peptides, aminosugars, aminoglycoside antibiotics, and non-peptidic molecules that were tested, primarily as PNA carriers, in antibacterial and antiviral applications. The chemistries of the conjugation and the applied linkers are also discussed.


Assuntos
Peptídeos Penetradores de Células , Ácidos Nucleicos Peptídicos , Ácidos Nucleicos Peptídicos/farmacologia , Ácidos Nucleicos Peptídicos/química , Antibacterianos/farmacologia , Sequência de Aminoácidos , Peptídeos Penetradores de Células/farmacologia
20.
Int Endod J ; 56(11): 1360-1372, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37615967

RESUMO

AIM: To determine the effect of a novel antimicrobial peptide (AMP; OP145) and cell-penetrating peptide (Octa-arginine/R8) conjugate on the killing of intracellular Enterococcus faecalis, compared to OP145 and an antibiotic combination recommended for regenerative endodontic procedures. METHODOLOGY: The biocompatible concentrations of OP145 and OP145-R8 were determined by assessing their cytotoxicity against human macrophages and red blood cells. Spatiotemporal internalization of the peptides into macrophages was investigated qualitatively and quantitatively by confocal laser scanning microscopy and flow cytometry respectively. Killing of extracellular and intracellular E. faecalis OG1RF by the peptides was determined by counting the colony-forming units (CFU). Intracellular antibacterial activity of the peptides was compared to a double antibiotic combination. Confocal microscopy was used to confirm the intracellular bacterial eradication. Significant differences between the different test groups were analysed using one-way analysis of variance. p < .05 was considered to be statistically significant. RESULTS: Peptides at a concentration of 7.5 µmol/L were chosen for subsequent experiments based on the results of the alamarBlue™ cell viability assay and haemolytic assay. OP145-R8 selectively internalized into lysosomal compartments and the cytosol of macrophages. Conjugation with R8 improved the internalization of OP145 into macrophages in a temporal manner (70.53% at 1 h to 77.13% at 2 h), while no temporal increase was observed for OP145 alone (60.53% at 1 h with no increase at 2 h). OP145-R8 demonstrated significantly greater extracellular and intracellular antibacterial activity compared to OP145 at all investigated time-points and concentrations (p < .05). OP145-R8 at 7.5 µmol/L eradicated intracellular E. faecalis after 2 h (3.5 log reduction compared to the control; p < .05), while the antibiotics could not reduce more than 0.5 log CFU compared to the control (p > .05). Confocal microscopy showed complete absence of E. faecalis within the OP145-R8 treated macrophages. CONCLUSIONS: The results of this study demonstrated that the conjugation of an AMP OP145 to a cell-penetrating peptide R8 eradicated extracellular and intracellular E. faecalis OG1RF without toxic effects on the host cells.


Assuntos
Peptídeos Penetradores de Células , Humanos , Peptídeos Penetradores de Células/farmacologia , Macrófagos/microbiologia , Antibacterianos/farmacologia , Citometria de Fluxo , Enterococcus faecalis , Biofilmes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...